PI3K signaling in the murine kidney inner medullary cell response to urea.

نویسندگان

  • Z Zhang
  • X Y Yang
  • S P Soltoff
  • D M Cohen
چکیده

Growth factors and other stimuli increase the activity of phosphatidylinositol-3 kinase (PI3K), an SH2 domain-containing lipid kinase. In the murine kidney inner medullary mIMCD3 cell line, urea (200 mM) increased PI3K activity in a time-dependent fashion as measured by immune complex kinase assay. The PI3K effector, Akt, was also activated by urea as measured by anti-phospho-Akt immunoblotting. In addition, the Akt (and PI3K) effector, p70 S6 kinase, was activated by urea treatment in a PI3K-dependent fashion. PI3K inhibition potentiated the proapoptotic effect of hypertonic and urea stress. Urea treatment also induced the tyrosine phosphorylation of Shc and the recruitment to Shc of Grb2. Coexistence of activated Shc and PI3K in a macromolecular complex was suggested by the increase in PI3K activity evident in anti-Shc immunoprecipitates prepared from urea-treated cells. Taken together, these data suggest that PI3K may regulate physiological events in the renal medullary cell response to urea stress and that an upstream tyrosine kinase conferring activation of both PI3K and Shc may govern urea signaling in these cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Urea and hypertonicity increase expression of heme oxygenase-1 in murine renal medullary cells.

Epithelial cells derived from the mammalian kidney medulla are responsive to urea at the levels of signal transduction and gene regulation. Hybridization of RNA harvested from control- and urea-treated murine inner medullary collecting duct (mIMCD3) cells with a cDNA expression array encoding stress-responsive genes suggested that heme oxygenase (HO)-1 mRNA was upregulated by urea. RNase protec...

متن کامل

Ras signaling in the inner medullary cell response to urea and NaCl.

The small guanine nucleotide-binding protein Ras, activated by peptide mitogens and other stimuli, regulates downstream signaling events to influence transcription. The role of Ras in solute signaling to gene regulation was investigated in the murine inner medullary collecting duct (mIMCD3) cell line. Urea treatment (100-200 mM), but not sham treatment, increased Ras activation 124% at 2 min; t...

متن کامل

A combination of NaCl and urea enhances survival of IMCD cells to hyperosmolality.

Physiological adaptation to the hyperosmolar milieu of the renal medulla involves a complex series of signaling and gene expression events in which NaCl and urea activate different cellular processes. In the present study, we evaluated the effects of NaCl and urea, individually and in combination, on the viability of murine inner medullary collecting duct (mIMCD3) cells. Exposure to hyperosmola...

متن کامل

Urea Signaling in Cultured Murine Inner Medullary Collecting Duct (mIMCD3) Cells Involves Protein Kinase C, Inositol 1,4,5-Trisphosphate (IP

Urea, in concentrations unique to the renal medulla, increases transcription and protein expression of several immediate–early genes (IEGs) including the zinc finger-containing transcription factor, Egr-1 . In the present study, the proximal 1.2 kb of the murine Egr-1 5 9 -flanking sequence conferred urea-responsiveness to a heterologous luciferase reporter gene when transiently transfected int...

متن کامل

Vasopressin regulation of multisite phosphorylation of UT-A1 in the inner medullary collecting duct.

Vasopressin signaling is critical for the regulation of urea transport in the inner medullary collecting duct (IMCD). Increased urea permeability is driven by a vasopressin-mediated elevation of cAMP that results in the direct phosphorylation of urea transporter (UT)-A1. The identification of cAMP-sensitive phosphorylation sites, Ser(486) and Ser(499), in the rat UT-A1 sequence was the first st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 278 1  شماره 

صفحات  -

تاریخ انتشار 2000